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ABSTRACT 

In this report, we describe our experience of applying several advanced analytics algorithms to the US 

Department of Veterans Affairs’ (VA’s) Corporate Data Warehouse (CDW) electronic health records 

datasets during FY2017-18. While various algorithms were applied to the CDW data, the main goal of 

this effort was to provide useful insights into the operational aspects (as opposed to the purely clinical 

aspect) of this specific implementation.  Since there are not many reports in the public literature on 

advanced analytics applied to this data, this report provides unique insight in this regard. We focused on 

two machine learning (ML) applications: (1) clinical pathway inference (patterns dominating clinical 

pathways applied to a male dataset of Stable Ischemic Heart Disease patients as use case) and (2) 

medical-concept representation learning’s capability to inform and refine cohort membership based on 

probable patient outcomes. 

 

During our study on clinical pathway inference, we used two main modeling techniques: (a) topic 

probabilistic modeling (latent Dirichlet allocation [LDA]) and (b) feature imbedding. We observed that 

the applicability of LDA to the pathway inference remains in question. LDA provides results that are 

intuitive and easy for humans to comprehend; however, when applied to the pathway inference, it also 

generates pathway patterns that consist of a few dominant pathway components. In addition, LDA 

provides no information regarding the relationships among components in the same pathway. The outputs 

of LDA are also found to categorize patients based on their trace data of clinical procedures. However, 

the results suggest that LDA is biased toward statistically dominant components. This makes it 

particularly hard to discriminate pathway subbranches. To address the issue, we designed a new pathway 

inference methodology that integrates temporal ordering of pathway components into LDA results, as 

existing feature embedding tools such as word2vec are not readily applicable to our task. In addition, we 

developed our own feature embedding tool customized for patient traces. We conclude this study by 

suggesting two approaches to use embedding representation of a component into LDA and briefly list our 

lessons learned and recommendations for future work. 

  

For our study on medical-concept representation learning ability to inform and refine cohort membership 

based on probable patient outcomes, during our empirical evaluation we compared methods from 

medical-concept learning to standard one of a kind (one-of-K) encoding to evaluate the change in 

effectiveness as done in Choi, Schuetz, Stewart, and Sun (2016). We performed two primary empirical 

evaluations. The first evaluation was on a curated collection of 60,000 patients with no more than 1 year 

of medical history included. The second was a collection of patients with no restriction to the amount of 

medical history included. The hypothesis across both evaluations is that representation learning is broadly 

useful independent of downstream processing models; thus, for each experiment, we trained three 

models—a logistic regression model, a two-layer neural network model, and a nearest-neighbor model—

and then averaged the results. Each model was trained using fivefold cross validation. We provided 

evidence that medical-representation learning improves predictions of the primary diagnosis category of a 

short patient history through 12 experiments. In addition, we provided evidence that medical-

representation learning fails to improve prediction of the primary diagnosis category of an arbitrarily long 

patient history through 12 experiments. We conclude this study with a brief list of our lessons learned and 

recommendations for future work. 

We conclude the report with a discussion of recent technology trends as they relate to our artificial 

intelligence and, more specifically, to our ML research and approaches as described previously. 
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1. INTRODUCTION  

In fiscal year (FY) 2017–2018 of the Health Information Technology-Advanced Analytics (HIT-AA) 

Project, Oak Ridge National Laboratory (ORNL) responded to the US Department of Veterans Affairs’ 

(VA’s) drive to assess the quality of patient care, measure value, and improve safety in health care 

delivery by designing and building advanced analytic software systems that leverage the Data Science 

Environment (DSE), one of three principal components in ORNL’s advanced analytics architecture. 

Through the DSE, ORNL has successfully begun to (1) assess the quality of treatment protocol guidelines 

and (2) quantify the value of guideline-recommended clinical pathways and treatment protocols by 

determining how variants in patient characteristics (risk factors), testing, and timing of treatments might 

lead to better patient outcomes. 

Meeting the VA’s advanced analytic needs for business intelligence and clinical decision support, ORNL 

has researched and developed analytic models and algorithms that support workflow analytics using 

artificial intelligence (AI) and, more specifically, machine learning (ML) methods, which enable analytics 

for complex event processing. In the following sections, ORNL provides the FY 2017–2018 report for the 

three VA HIT-AA research tasks. In Section 1, we present an overview of the two research plans. Section 

2 describes the problem domain study and models by research task, Section 3 details the development of 

analytic models and methods by research task, Section 4 discusses the application of advanced analytics 

(models and methods) in the DSE, and Section 5 discusses future work and opens issues. 

1.1 HIT-AA RESEARCH OVERVIEW 

Using advanced analytics on big, heterogeneous health data is an answer to VA’s ambition to monitor and 

assess quality, safety, and value to measurably improve its delivery of health care to veterans. Through 

novel methods and research, ORNL’s HIT-AA effort supports the VA’s aim to ensure veterans receive 

high-quality health care. The HIT-AA project uses big health data in conjunction with specific clinical 

workflows and extensions for cohorts of patient cases in real time. It is a big advance to have specific 

information that is just a few clicks away to measure quality and outcomes of care, not only for traditional 

stable ischemic heart disease (SIHD) patient cohorts for which there are published guidelines (Fihn et al., 

2012) but also for more focused sub-cohorts such as those patients who have SIDH and who are over 

80 years of age, have been diagnosed with post-traumatic stress disorder (PTSD), have had diabetes for 

over 10 years, and have had a myocardial infarction in the last year. 

The HIT-AA project has engendered research that aims to investigate various areas of advanced analytics 

such as ML and neural networks, specifically focusing on (1) clinical pathway inference (patterns 

dominating clinical pathways from the VA’s Corporate Data Warehouse [CDW]), (2) medical-concept 

representation learning ability to inform and refine cohort membership based on probable patient 

outcomes, and (3) game theoretic approaches to structure an inference model for guideline-based clinical 

cohort analytics and quality measurement (see HIT-AA: Game-Theoretic Approach for Understanding 

and Modeling Stable Ischemic Heart Disease). This HIT-AA research could potentially be utilized to 

improve the quality of care to veterans as well as enable metrics regarding safety and value.  

1.1.1 Clinical Pathway Inference 

Specific Aims: This research aims to infer patterns dominating clinical pathways from CDW and then to 

use the obtained insights to further analyze cohorts from the perspective of clinical pathway 

implementations. More specifically, this research is (1) investigating different methodologies using 

probabilistic modeling (latent Dirichlet allocation [LDA]), word embedding, and in the future, a restricted 

Boltzmann machine (RBM), (2) performing a comparative study on pathways inferred from different 

methodologies looking at the evaluation strength and limitation of each methodology, and (3) exploring 
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opportunities with inferred pathways such as the evaluation and refinement of pathways and cohort 

analysis from a pathway perspective.  

Significance: As integrated multidisciplinary care maps, clinical pathways aim to improve outcomes of 

patients’ health and clinical efficiency by standardizing care processes and have demonstrated their value 

in support of patient care management. However, there remains a lack of consensus regarding what 

constitutes a clinical pathway. As a result, a clinical pathway has numerous variations in practice and 

often reflects no relation to the ideal pathways elaborated by pathway designers. This research aims to fill 

the gap by computationally modeling clinical pathways. 

Inferred patterns allow us to define a distance metric between patients from the perspective of clinical 

activities performed on them. Because this essentially enables identification of subgroups within a cohort 

by mapping the patients into the defined metric space, a comparative cohort analysis can be performed 

between different subgroups. Also, patients whose clinical activities are unusual from those of rest of the 

patients with the same diagnosis are easily detected and evaluated. 

Innovation: By performing a comparative study of the results from the three approaches (LDA for 

inferring clinical pathway patterns from the CDW database, distributed representations that capture 

semantics of words, and in the future, a RBM and its variations), this research not only assesses strengths 

and weaknesses of each methodology but also generate non-trivial insights regarding the practice of 

clinical activities hidden in CDW, which might not be feasible if a single methodology is applied, 

potentially improving the quality of care. 

1.1.2 Medical-Concept Representation Learning  

Specific Aims: This research uses medical-concept representation learning to predict cohort membership 

specializations based on patient and historical outcome information. We investigate the ability of 

medical-concept representation to inform and refine cohort membership based on probable outcomes. 

Broadly, the goal is to provide some data-driven flexibility into how data are represented to ML models to 

improve the quality of analysis. This flexibility in representation can enable learning relationships 

between codes, prescription information, and outcomes independently and jointly. (Reasons why similar 

information might be represented in different ways in an electronic health record include variability in 

coding, free text entry, etc.) Medical-concept learning has demonstrated the ability to relate International 

Classification of Diseases, ninth revision (ICD-9), codes related to eye problems even though the Clinical 

Classifications Software groups these codes into different clinical categories (Choi, Schuetz, Stewart, & 

Sun, 2016).  

This research produces a software capability operating on CDW data to drill down into SIHD cohort 

information and provide more context into probable outcomes using medical-concept representation 

learning.  

Significance: Providing more finely grained refinements to cohort-based guidelines, informed by 

historical patient outcomes, could improve outcomes by ensuring a more obvious mapping of individual 

needs to the cohort. This method could provide additional context to help inform how guidelines, devised 

for cohorts, can best aid the patient. Potentially, this research could lessen the tension between the 

generality of guidelines and the specifics of treating an individual patient.  

Medical-concept representation learning is an area of active research and has created cohorts and 

increased prediction accuracy. Medical-concept representation learning has been found to improve both 

the predictive capability of ML tools for specific tasks (Choi, Schuetz, Stewart, & Sun, 2016; Zhu et al., 

2016) and to improve the creation of cohorts for cohort analysis (Zhu et al., 2016). The broad intuition 
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behind medical-concept learning is to provide some data-driven flexibility in how the data are presented 

to ML models to improve the quality of analysis. Specifically, this is achieved by embedding data into a 

vector space. Unlike standard categorical one-of-K encoded representations, medical-concept 

representation learning updates during model training. Part of the research objective is to determine and 

evaluate different embedding methodologies and quantify their relative contribution to improving 

downstream analysis.  

Innovation: Focusing more on representation as opposed to algorithm development, this tool makes 

available the most fine-grained analysis of cohort information, informing treatment in a more precise 

manner and potentially improving the quality of care.  

2. DEVELOPMENT OF PATHWAY INFERENCE MODELS AND METHODS 

An intermediary step, developing analytics models and methods, is the core of the solution. We built 

models and developed methods for inference of clinical pathway patterns.   

The following sections present conceptual descriptions of the advanced data analytics algorithms used in 

this project to infer clinical pathway patterns from the CDW database. We plan to use two main modeling 

techniques: (1) topic modeling and (2) feature imbedding. In the future, we would like to also apply the 

RBM to see how it compares to topic modeling LDA. 

2.1 TOPIC MODELING  

Topic modeling is part of the field of information retrieval. It provides methods for automatically 

organizing, understanding, searching, and summarizing large electronic archives. Topic modeling is 

helpful to 

1. uncover hidden topical patterns that pervade the collection; 

2. annotate documents according to topical patterns; and 

3. use the annotations to organize, summarize, and search texts. 

There are several types of topic modeling algorithms. During this project, we use the LDA model. In the 

future, we would like to also apply the RBM model to compare, and validate, the LDA model.  

Topic modeling uses the following terms to define the modeling items: (1) vocabulary, (2) topic, 

(3) document, (4) word, and (5) corpus. In topic modeling, a vocabulary is a set of unique words. These 

terms are presented in  

 

Table 1. 

In order to apply topic modeling to the field of health care informatics, we need to map the terms using 

the modeling of the items to the clinical terminology. In the context of the clinical pathways for this 

study, the following terms are defined as: 

• A vocabulary consists of the pathway components (i.e., a set of unique treatment activities).  

• A topic is a clinical pathway. A sample of a clinical pathway is shown in Figure 1, which presents 

a redraw of Figure 2 for diagnosis of SIHD taken from the 

2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of 

Patients with Stable Ischemic Heart Disease (Fihn et al., 2012). A clinical pathway is the flow of 

clinical events to diagnose or treat a disease or a health condition.  
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• A document is the equivalent of a collection of clinical activities performed on a particular patient 

during a period of time.  

 

• A word, an item, or a token is a particular clinical treatment activity. In Figure 1, a word is each 

of the shapes (either a box or a diamond shape) identified by a unique identifier number.  

• Finally, a corpus is a cohort of patients. 
 

 

Table 1. Topic modeling terms mapped to pathway terminology 

Topic modeling 

term 
Definition 

Topic modeling term  

mapped to  

clinical pathways terminology 

Vocabulary A set of (unique) words Pathway components (set of unique 

treatment activities) 

Topic A pattern of words Clinical pathway 

Document A sequence of words Collection of clinical activities performed on 

a particular patient 

Word A basic unit of discrete data. An item, term, or 

token in the vocabulary 

Clinical activity 

Corpus A collection of documents A cohort 
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Figure 1. Clinical pathway for the diagnosis of SIHD (source: Fig. 2 Diagnosis of SIHD found in the 2012 

ACCF SIHD guideline). 
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2.1.1 Latent Dirichlet Allocation 

Latent Dirichlet allocation (LDA) is a part of the field of information retrieval. Specifically, LDA is a 

generative probabilistic model of a corpus (Blei, 2003). LDA works over documents that are generated 

randomly and are unordered. Each document is assumed to be generated by this (simple) process. 

Documents are represented as a random mixture over latent topics. Documents exhibit multiple topics 

(but typically not many), and they have different distributions over topics. 

A topic is a distribution over a fixed vocabulary. These topics are assumed to be generated first, before 

the documents. The number of topics should be specified in advance. 

2.1.2 LDA Generative Process for a Document 

The following section presents the process to generate documents in LDA (Figure 2). For this report, we 

rely on the work of Blei (2003) and Huang et al. (2014, 2013). We do not attempt to formally define LDA 

in this document. Rather, we present the referenced descriptions to illustrate our work and refer the reader 

to the references for the details. We follow as an example Huang’s work using LDA to discover treatment 

patterns as a probabilistic combination of clinical activities. 

• Choose N ~ Poisson(𝞷) 

• Choose N words or the topics 

Generative process: 

• Choose 𝜭 ~ Dir(𝜶) 

• For each of N words wn: 

– Choose a topic 𝑧𝑛 ~ Multinomial(𝜭) 

– Choose a word wn from 𝑝(𝑤𝑛|𝑧𝑛, 𝛽) 

 

Figure 2. LDA generative process for a document. 
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Where:  

 𝛼, 𝛽 = parameters of the Dirichlet priors on topic (per document) and word (per topic) 

distributions, respectively 

w = word 

N = number of words 

M = number of topics 

Z = topic 

2.1.3 Issues with LDA for Pathway Pattern Inference 

The following are some of the drawbacks of LDA applied to clinical pathway pattern inference. 

• LDA was originally designed for topic modeling of text documents. 

• LDA requires prior distributions, which are always difficult to obtain and often intuitively 

initialized.  

• LDA considers a document as a bag of words (or equivalently as a bag of clinical activities for 

the purpose of this text). 

– Spatial/temporal structures in occurrences of treatment activities are ignored. 

– Pathway subbranches are hard to discriminate.  

• LDA tends to generate dominant patterns based on frequencies of occurrences. 

– The results might be too obvious. 

2.2 FEATURE EMBEDDING  

Feature embedding, also known as word or concept embedding, is a neural network implementation that 

aims to learn distributed representations of words. Unlike LDA and RBM, which learn the distribution of 

mere occurrences of input words, feature embedding learns occurrences of words against occurrences of 

other words that neighbor them in documents. In data mining, a word can be associated or predicted based 

on the words that surrounds it (Figure 3). 

  

Figure 3. Different embedding strategies means different mappings. 

Similarly, feature embedding is used to represent a health care event over time per patient in his medical 

history. In this context, a word, a feature, or a concept is a health care event or clinical feature. Each 

medical event, per patient, is represented in a vector, as shown in Figure 4. Then, the vectors are stacked 

to form a matrix of events per patient (Figure 4). What this means is that for each patient we concatenate 

medical events in a period of time in a sequence ordered by time that represents the patient’s history. By 

creating this matrix per patient, we can identify cohorts, compare patient treatments, and identify 

similarities and differences.  

Identifying patients’ similarities in electronic health record (EHR) data is a very challenging process. We 

do not have control over how data are collected. The data used in this study may be incomplete, 



 

9 

inaccurate, or inconsistent. For this work, we follow the work presented in Zhu et al. (2016). During this 

study, we are using the Gensim Python package. 

 

Figure 4. Feature embedding. 

2.2.1 LDA vs. Feature Embedding 

LDA explains the relationship between patient and pathway component. It is intuitive and easy to 

understand. In LDA, there are no relationships between components. Whereas humans cannot 

comprehend the embedding of a component, feature embedding explains the relationship between 

components. 

Having these two different advanced algorithms, we wonder if we can combine the two to increase our 

understanding of clinical pathways. Combining LDA and feature embedding could be implemented in a 

future extension of this project. 

3. TESTING OF PATHWAY INFERENCE MODELS AND METHODS 

After building models and developing methods and algorithms, we tested both ML approaches in the 

DSE. The pathway inference approach is discussed below.  

3.1 PATHWAY INFERENCE AND CDW DATA 

In this section, we describe our efforts in pathway inference from CDW data. We first report an empirical 

evaluation of LDA applied to a small cohort of SIHD patients retrieved from the CDW data. Then we 

give status updates on the ongoing effort of integrating LDA with the feature embedding technique, a 

neural network approach that captures a degree of associations between pathway components in their 

distributed representations. 

Clinical pathways are integrated multidisciplinary care maps used to manage and guide implementation of 

evidence-based clinical procedures and activities. They seek to improve the outcomes of patient health 



 

10 

and clinical efficiency by standardizing care processes. However, there remains a lack of consensus 

regarding what constitutes a clinical pathway. As a result, a clinical pathway has numerous variations in 

practice and often reflects no relation to the ideal pathways elaborated by pathway designers. This 

research aims to fill the gap by computationally modeling clinical pathways. Clinical pathway modeling 

is an effort to derive unique patterns that constitute each clinical pathway by sifting through EHRs. Once 

extracted, such patterns disclose not only consensus clinical activities practiced in VA hospitals but also 

non-trivial knowledge with regard to specific diseases. The patterns can thus be used to measure the gap 

between the pathways suggested and the actual practices in VA hospitals and can also be further 

examined to refine the suggested pathways. 

Inference of clinical pathway patterns from EHRs is a challenging task. Therapies and treatment 

procedures are too diverse and complex to be represented by a simple model. Among many 

methodologies, which have been proposed in the recent past, most notable works are based on LDA, a 

probabilistic approach originally designed for topic modeling of text corpus. We observed, however, the 

applicability of LDA to the pathway inference remains in question. Most notably, LDA considers a 

document as a bag of words disregarding the order of their appearances in sentences and tends to generate 

dominant patterns based on frequencies of occurrences. Therefore, spatial (or temporal) structures of 

treatment activities are ignored in generating clinical pathways. This makes it particularly hard to 

discriminate pathway sub-branches. To address the issue, we designed a new pathway inference 

methodology that integrates temporal ordering of pathway components into LDA results. 

3.1.1 LDA and Pathway Inference 

Latent Dirichlet allocation (LDA) is a probabilistic approach for automatically organizing, understanding, 

searching, and summarizing a large electronic text archive. Given a set of text documents, LDA uncovers 

hidden topical patterns that pervade the collection and annotate each document by relevancy to topics. 

Formally, LDA produces topics in terms of probability distributions over the entire set of words (or 

vocabulary) in the corpus. Each document is then represented as a probability distribution over these 

topics. Here the number of topics is assumed to be known a priori.  

To apply LDA to inference of a clinical pathway, we need to rename the terms used in the topic modeling 

to those used in a clinical pathway (Table 1). A component of a pathway replaces word, a patient trace 

(treatment activities performed on the patient arranged by the time of execution) replaces document, a 

pathway replaces a topic, and the set of the entire pathway components (or treatment activities) replaces 

vocabulary. LDA, when applied to pathway inference, produces a number of clinical pathways, where 

each pathway is defined as a probability distribution over treatment activities and each patient trace as a 

probability distribution over the pathways. 

LDA requires a dataset in the form of a list of bags of words. More specifically, all the words in a 

document are presented together to LDA as if placed in a bag. LDA then computes occurrences of each 

word in each bag to produce the result. To apply LDA to pathway inference, we need to provide a patient 

trace as a bag of treatment activities. In fact, transformation of CDW data into suitable data is the key to 

the success of the approach. This process mainly consists of three steps: 

1. Identification of pathway components in CDW  

2. Development of procedures to extract occurrences of each component  

3. Grouping of highly temporarily correlated components  

Here, step 3 is the focus of our current effort to address the issue of applying LDA to pathway inference. 

This is discussed in greater detail in the subsequent sections.  
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3.2 EMPIRICAL STUDY: LDA OVER CDW DATA 

The overall procedure of applying LDA to pathway inference is illustrated in Figure 5. 

 

Figure 5. Overall procedure of topic modeling over CDW data for inference of pathways. 

To evaluate LDA as an approach to inferring clinical pathways, we identified 20,458 records of patients 

who underwent cardiovascular stress tests (current procedural terminology [CPT] code 93015) in 2017. 

For each patient record, a trace is generated by including data that spanned a month following the day of 

the stress test. This generated  

• 149,218 unique pathway components 

• 2,490,724 occurrences of the components 

For the initial investigation, we decided to down select the data by focusing on inpatients and considered 

the following component types only. 

• InpsurgicalICDpcs 

• Intcpt 

• IntDischargeDRG 

• RxFill 

• OutpCPT 

• InptICPpcs 
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This reduced the data to 

• 20,458 traces 

• 6,203 unique components 

• 415,232 occurrences of the components 

We then transformed the patient traces into bags of components and applied LDA. Figure 6(a) through (j) 

show 10 pathway patterns LDA identified, where for each pathway, 10 components of the highest 

probabilities are shown. Also, descriptions of the components in each pattern and a proposed clinical 

interpretation of the pattern are provided. Note, components labeled with CPT and ICD-10 Procedure 

Coding System (PCS) are included, but not prescription drugs, which will be available in the near future.  

 

Figure 6(a). Pathway pattern 1 represented as a probability distribution (left) and descriptions of components 

(right). This cohort consists of patients with heart disease with events related to diagnostic stress tests for SIHD. 

Only the top 10 components are shown. 

 

Figure 6(b). Pathway pattern 2 represented as a probability distribution (left) and descriptions of components 

(right). This cohort represents patients with heart disease and diabetes, likely a sub-cohort of pattern 1 with added 

pharmacology therapy for diabetes. Only the top 10 components are shown. 
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Figure 6(c). Pathway pattern 3 represented as a probability distribution (left) and descriptions of components 

(right). This cohort may consist of patients who are recovering from acute cardiac events such as heart attacks, with 

diagnostic tests to gauge continued recovery. Only the top 10 components are shown.  

 

Figure 6(d). Pathway pattern 4 represented as a probability distribution (left) and descriptions of components 

(right). This cohort may consist of patients who have pulmonary embolism or are going through lung cancer 

screening. Only the top 10 components are shown. 

 

Figure 6(e). Pathway pattern 5 represented as a probability distribution (left) and descriptions of components 

(right). This cluster may consist of patients with psychiatric conditions, who are also being counseled for 

alcoholism, or a cluster of VA patients who are a homeless population with social support and mental health 

treatment. Only the top 10 components are shown. 
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Figure 6(f). Pathway pattern 6 represented as a probability distribution (left) and descriptions of components 

(right). This cohort of patients could represent prostate cancer staging and therapy, with associated prophylaxis 

post-dental procedures or for septicemia. Only the top 10 components are shown. 

 

Figure 6(g). Pathway pattern 7 represented as a probability distribution (left) and descriptions of components 

(right). This cluster could represent a cohort of elderly patients who have regular outpatient visits or standard post-

hospitalization outpatient follow-up visits. Only the top 10 components are shown. 

 

Figure 6(h). Pathway pattern 8 represented as a probability distribution (left) and descriptions of components 

(right). This cohort may represent elderly patients who have regular outpatient visits. Only the top 10 components 

are shown.  



 

15 

 

Figure 6(i). Pathway pattern 9 represented as a probability distribution (left) and descriptions of components 

(right). This cohort could consist of patients on aspirin and blood thinners, who are post-cardiac patients and have 

outpatient angina treatment. Only the top 10 components are shown.  

  

Figure 6(j). Pathway pattern 10 represented as a probability distribution (left) and descriptions of 

components (right). These patients could be cohorts of outpatient diabetic patients or those who are followed for 

other renal conditions. Only the top 10 components are shown. 

We examined the results in order to evaluate whether LDA can capture clinical pathway patterns without 

reference to a candidate pathway and can discriminate patients in terms of conducted treatment activities. 

For this, we compared the 10 pathways, clustered patients based on their probability distributions over 

pathway patterns, and mapped components of each pathway into days by estimating their expected 

occurrences.  

As shown in Figure 7, LDA disclosed pathways that mostly consist of cardiovascular-related components. 

However, LDA does not provide an explanation for how different components are organized into 

different pathways. More specifically, information about how the components in the same pathway are 

related is not available, which is a serious drawback in reconstructing the actual pathways.  

Next, we clustered patient traces. With the 10 pathways LDA identified, each patient trace can be 

represented as a point in a ten-dimensional vector space. That is, for each patient trace, the probabilities 

associated with the 10 pathways are coordinates in the vector space. We applied a k-means clustering 

(method of vector quantization) algorithm that produced 10 clusters and identified patient traces. We 

visualized the result by reducing the dimension from 10 to 2 and 3 using the T-distributed Stochastic 
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Neighbor Embedding (t-SNE), a machine learning algorithm (MLA) for visualization, as shown in 

Figures 8 and 9. In the figures, the 10 clusters of patients are displaced in different colors. The results 

show that most clusters are found to be localized and spatially characterized even in lower dimensions. 

The result demonstrates that clustering of patient traces with respect to LDA outputs can characterize 

patient groups based on their treatment procedures. Outlier detection needs further study. As shown in 

Figures 8 and 9, patient traces that are spatially dispersed cannot be distinguished visually in the present 

two-dimensional (2D) or three dimensional (3D) representations.  

 

Figure 7. Clustering of patient traces using LDA results. K-means algorithm produced 10 clusters 

of the patient traces. The clusters are shown after projected into 2D space using t-SNE. 
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Figure 8. Clustering of patient traces using LDA results in a 3D space. 

K-means algorithm produced 10 clusters of the patient traces. The 

clusters are shown after projected into 3D space using t-SNE. (Note that 

colors assigned to the clusters are not the same as those used in Figure 7.) 

Finally, we studied how each pathway component is likely to occur on each day (i.e., between day 1 and 

day 31). Here, “day” is relative days from the day when the initial cardiovascular stress test was given. 

This is intended to obtain an empirical pattern of each pathway. For this we first mapped all the pathway 

components into the days of their occurrences (Figure 9). This is a complementary view to Figure 7. The 

intent of this study is to evaluate whether LDA can capture how pathways are practiced in VA hospitals. 

Although the result is from a small explorative study, it captures clear patterns in occurrences of dominant 

components in each pathway pattern. For more comprehensive future studies, we plan to perform a more 

thorough investigation in analyzing results to confirm this observation. (See Appendix A, Figures A-1(a) 

through A-1(j) for expected occurrences of components in each pathway pattern computed using posterior 

probabilities [Gibbs sample].) 
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Figure 9. The number of occurrences of pathway components over the period of one 

month. Day 1 is the day when the first cardiovascular stress test was given.  

3.2.1 Feature Embedding 

Feature embedding is a neural network implementation that aims to learn distributed representations of 

words. It maps a word into a high dimensional space—as high as a 300 dimension, in practice—where the 

word is placed close to semantically similar words. Here “semantically similar” denotes two words that 

tend to appear in vicinity. Feature embedding, thus, incorporates occurrences of words against 

occurrences of other words that neighbor them in documents into the learning process.  

When applied to patient trace data where pathway components are placed on the day (or the exact 

timestamp, for an investigation of finer resolution), pathway components that co-occur within the same 

time window of interest map to a high dimensional vector space where they are placed close to one 

another. Figure 10 illustrates placements of a time window over to six patient traces where pathway 

components are aligned by the day of their occurrences. Note each time window slides to right to include 

new sets of co-occurring components.  

We found existing feature embedding tools such as word2vec are not readily applicable to our task. Those 

tools were developed to include pairs of words that are located within a fixed distance in the same 

sentence when computing the embedding. Here, a distance is simply the difference of word positions in a 

sentence. In practice, this is done by placing a window into a sentence and considering all pairs of words 

in the window. The window then slides to the right to include new sets of pairs. In summary, for the 
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existing tools, only the positions of the words within a sentence are relevant information to reflect 

temporal correlations on the embedding.  

In contrast, for our task, we need to consider pairs of pathway components that occur within a fixed time 

window—that is, not the positions of components in the trace, but the exact time difference between the 

occurrences should be taken into consideration when computing the feature embedding. This suggests 

defining a sliding window in terms of time and considering the pairs of pathway components within the 

window. Consequently, the number of components within a window differs to a great extent.  

To address the difference, we developed our own feature embedding tool customized for patient traces. In 

particular, we 

• implemented “Efficient Estimation of Word Representations in Vector Space” by Mikolov, 

Sutskever, Chen, Corrado, & Dean (2013) from Google, 

• adopted the skip-gram with negative-sampling for efficient estimation, 

• implemented the tool using PyTorch, a deep neural network package from Facebook, and 

• developed and tested the tool in a machine with four Nvidia Volta GPUs that we instantiated in 

the enclave. 

 

Unlike existing tools, it accepts sequences of time-ordered items with window parameter in terms of 

seconds.  

 

Figure 10. Illustrative example of placing sliding window over to patient traces for feature embedding.For 

each patient trace, a window of the same temporal size is placed to consider pairs of components in the window for 

embedding. The window slides into the next position until it passes day 31 (Huang, Lu, Duan, & Fan, 2013). 

3.2.2 LDA and Feature Embedding 

As illustrated in a previous section, LDA provides results that are intuitive and easy for humans to 

comprehend. When applied to the pathway inference, it also generates pathway patterns that consist of a 

few dominant pathway components. Also, for each trace, it assigns a few pathways with high probability, 
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leaving the rest of the pathways with very low probabilities. This essentially helps to characterize each 

pathway and each patient by their dominant components and pathways, respectively.  

However, LDA provides no information regarding the relationships among components in the same 

pathway. This imposes a serious drawback when it is applied to the inference of sequential aspects of a 

pathway, where temporal correlation and ordering of occurrences are important factors. On the other 

hand, feature embedding provides a relationship between two components in terms of distance in a vector 

space. However, incorporation of such an embedded representation of a component into the LDA 

framework is an open question. In this report we describe the two approaches that we are currently 

exploring. 

The first approach to integrate feature embedding and LDA is to apply a clustering algorithm over 

pathway components utilizing their pairwise distances in the embedded space. Once the component 

groups are obtained through the clustering, the subsequent procedure is the same as a regular LDA 

processing. The only difference is the final LDA outputs are represented in terms of the clustered 

component groups rather than individual components. This approach is intuitive, and results are easy to 

comprehend. However, since components are expected to belong to multiple groups in practice, a 

clustering algorithm that permits nonexclusive clustering should be applied. We are evaluating fuzzy-

clustering (a form of clustering in which each data point can belong to more than one cluster) algorithms 

to this end. The overall procedure is illustrated in Figure 11. 

 

Figure 11. Clustering approach to integrate LDA and feature embedding. The final LDA results are presented 

in terms of component groups. 

The second approach is to transfer feature embedding framework to learn LDA weights (Figure 12). More 

specifically, this approach borrows LDA output structures (sparse document and topic representations), 

but not LDA itself. With this approach, a pathway is defined as a point in the same embedded space of the 

components. As in LDA, a pathway is then represented as a probability distribution over the entire 

components. Here, we convert the distance from the pathway point to a component into probability. 

Formally, the probability of the i-th component in a pathway is 

, 
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where di is distance between the i-th component and the pathway, and 𝜎2 is variance of distances 

(following Gaussian distribution likelihood). A patient trace is represented similarly by computing 

distances to each pathway point from the components found in the trace.  

 

Figure 12. Transfer of feature embedding to learn LDA weights. 

3.3 LESSONS LEARNED AND NEXT STEPS 

In this study, we applied and developed a topic modeling approach to infer clinical pathway patterns for 

an SIHD cohort by sifting through electronic health records (EHRs). Once extracted, such patterns 

disclose not only consensus clinical activities practiced in VA hospitals but also nontrivial knowledge 

with regard to SIHD. In particular, we  

 

A. demonstrated how consensus pathway patterns are practiced in VA hospitals by Latent Dirichlet 

Allocation (LDA) and showed they can also be used to further cluster cohorts 

B. introduced the feature embedding concept (e.g., word2vec) to address the weakness of 

conventional topic modeling methods such as LDA for pathway inference and implemented an 

in-house feature embedding software customized for clinical pathway inference and  

C. implemented the preceding procedures using highly portable and easily reusable open source 

programming environments including Jupyter and Apache Spark. 

According to the empirical study presented in the previous sections, LDA, when applied to modeling of 

clinical pathways, extracts a given number of unique salient patterns, each of which characterizes certain 

aspects of clinical pathways. The outputs of LDA are also found to categorize patients based on their trace 

data of clinical procedures. However, the results also suggest that LDA is biased toward statistically 

dominant components. In addition to the aforementioned weakness of LDA (i.e., ignorance to temporally 

correlated components), this issue should be further studied. We will investigate whether the feature 

embedding approach can also mitigate the issue.  

4. DEVELOPMENT OF REPRESENTATION LEARNING MODELS AND METHODS 

This section discusses the development and testing of medical-concept representation-learning models 

and methods that apply representation learning to cohort clustering, thereby improving our understanding 

of the process of predicting cohort membership. The objective of this research is to give some data-driven 

flexibility to how data are presented to machine learning models, thus improving the quality of analysis.  

4.1 MOTIVATION AND APPROACH  

Data analytics for clinical decision making can be challenging. First, there is tension between the medical 

guidelines determined from studying groups of patients and the act of treating a specific patient. Medical 

professionals have deep expertise in the current treatment protocol guidelines at multiple levels of 

granularity. To ensure relevant and useful results, these guidelines are an analysis of cohorts of patients; 

however, professionals treat a single patient at a time. This fact creates strain between the generality of 

the guidelines and the specifics of the individual. More fine-grained refinements to cohort-based 

guidelines informed by historical patient outcomes could improve outcomes by ensuring a data-driven 
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mapping of the individual needs to the cohort. When treating an individual, it may be challenging to 

determine  

• how a person fits with previous cohort analysis and 

• how a cohort may be refined to better inform outcomes.  

Additional context can help inform how guidelines can best assist the individual. To that end, we 

investigate two methods to transform how data are presented to algorithms to improve performance:  

1. aggregate data using medical groupers  

2. apply representation learning methods on aggregated data 

Secondly, health care analytics has unique challenges associated with the data of health care. Indeed, “It 

is widely held that 80% of the effort in an analytic model is preprocessing, merging, customizing, and 

cleaning datasets, not analyzing them for insights” (Rajkomar et al., 2018). There are many challenges 

associated with deriving health care insights from health care data. Health care data are designed to 

address many different objectives across many stakeholders such as including documentation for 

compliance purposes, maintaining privacy, ensuring accurate billing information, and informing health 

care decisions. As such, similar information may be included multiple times in different formats in 

multiple places. This redundancy can impair performance due to overrepresentation. As such, it is 

difficult to answer questions relating to how information should be presented to algorithms in the service 

of health care analytics.  

Targeting treatment to individuals is a challenging process. Scientific studies capture phenomena at a 

general level, but medical practitioners treat individuals. How do we address this gap? We can do this by 

using big data analytics, which is a challenging endeavor. The aim is to confidently map an individual to 

the smallest appropriate group or cohort. In this study, we apply representation learning to cohort 

clustering. Through cohort clustering, we understand the process of predicting cohort membership. 

Work has been done for cohort clustering, but there is often a piece missing: how does this drive better 

health care outcomes? An example in the literature is separating widely disparate diagnoses: COPD, 

diabetes, obesity, heart failure (Verberne et al., 2017). Also, can we use the same techniques to perform 

sub-cohort clustering? In Figure 13, we present a sample set of 60 K CDW patients to facilitate iterating 

quickly, gaining intuition about what relationships to amplify and where the noise is. This study drives 

our interactions with the data refinement team to better direct analysis going forward. 
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Figure 13. Visual relationship between codes from dense representation 

(60 K patients using VA CDW data). 

4.2 MEDICAL-CONCEPT REPRESENTATION LEARNING FOR COHORT CLUSTERING 

To understand representation learning, we need to understand ML. ML is the capability of AI algorithms 

to acquire new knowledge by identifying data patterns in raw data; ML also includes the capability of 

making decisions based on the knowledge acquired. Further, the MLA can make predictions. The 

performance of MLAs heavily, and literally, depends on the “representation” of the raw data to be 

analyzed. It also depends on the information passed to the MLA. Each piece of information passed to the 

MLA is called a “feature.” The MLA’s dependence on representation is a very common dependence in 

computer science problems. This dependence is what can make an algorithm perform better or worse. 

Thus, to make an MLA efficient, it is important to carefully select the set of features that will help to 

perform better on each case or task given. However, sometimes, it is difficult to identify what are the 

appropriate features that should be given to the MLA. In these cases, it is helpful to use representation 

learning.  

Representation learning is a class of unsupervised learning methods to assist in the selection of the 

presentation of data to algorithms to facilitate analysis. Representation learning helps to discover not only 

the mapping from representation to output but also the representation itself (Goodfellow, Bengio, & 

Courville, 2016). Learned representations often result in much better performance than what can be 

obtained (Zhu et al., 2016) with hand-designed representations. Representation learning also allows AI 

systems to rapidly adapt to new tasks, with little help from people or from other systems. In addition, 

representation learning enhances performance enabling the discovery of new features. Representation 



 

24 

learning is tightly related to feature embedding; both techniques have been utilized in natural language 

processing and ML. When it is not possible to obtain a good representation to solve a problem, we need to 

use deep learning (DL). DL introduces representations that are expressed in terms of other simpler 

representations.  

“Different data representations can entangle and hide more or less the different explanatory factors of 

variation behind the data” (Bengio, Courville, & Vincent, 2013). While different data representations can 

obscure certain factors, medical-concept representation learning has been found to improve both the 

predictive capability of ML tools for specific tasks (Choi, Schuetz, Stewart, & Sun, 2016; Zhu et al., 

2016) and the creation of cohorts for cohort analysis (Zhu et al., 2016). Representation learning applied to 

health care has improved the ML tasks of diagnosis prediction, cohort creation, cohort membership, 

refinement of cohort membership, and outcome prediction. However, there is a need to improve outcomes 

by informing patient cohort information using probable outcomes.  

In this research, we investigate the ability of medical-concept representation to inform and refine cohort 

membership based on patient information. Medical-concept learning is an area of active research and has 

shown promise. The broad intuition is to provide some data-driven flexibility into how the data are 

represented to ML models to improve the quality of analysis. This flexibility in how data are 

communicated using representation learning has resulted in learning relationships both within a field, 

such as codes, prescription information, and outcomes independently, and across fields (Rajkomar et al., 

2018). One example is that medical-concept learning has demonstrated the ability to relate ICD-9 codes 

related to eye problems 224.4 and 370.00 even though the Clinical Classifications Software (CCS) groups 

these codes into different clinical categories (Choi, Schuetz, Stewart, & Sun, 2016).  

Our study is based on the work described in Choi et al. (2016); Miotto, Li, Kidd, and Dudley (2016), and 

Choi, Schuetz, Stewart and Sun (2016). Each of the previous works cited in this area focuses on the 

ability of predicting information concerning a visit (encounter). As such, this work hypothesizes an 

extension of previous visit-based prediction methods to a patient-based prediction.  

For the implementation of representation learning, we use the skip-gram algorithm (Mikolov, Sutskever, 

Chen, Corrado, & Dean, 2013). Skip-gram is a neural network-based algorithm capable of capturing 

relationships and predicting neighboring words between a sequence of words based on the co-occurrence 

of words inside a context. Skip-gram is a standard method for learning word representations and to 

capture relations between words by training on large amounts of text. In the same way that a text is a 

sequence of words, a health care record can be seen as a sequence of medical events for diagnosis, 

treatment, medication, and outcomes in the patient’s life span. There is evidence that learned 

representations allow for a type of reasoning by analogy determined by vector addition. Indeed, some 

such analogies have been reported in the popular scientific press such as king - man + woman = queen. In 

this example, if E denotes the result of encoding, the researchers determined that the vector in the 

encodings of all words in the vocabulary closest to E(king) - E(man) + E(woman) was E(queen).  

During our representation learning study, we analyzed patient visit records and their associated diagnosis 

codes (ICD-9 and ICD-10), procedures (CPT codes), and drug usage (National Drug Code [NDC]).  

5. TESTING OF REPRESENTATION LEARNING MODELS AND METHODS 

In this section, we describe (1) our method of employing representation learning to CDW data, (2) our 

work plan to evaluate the effectiveness in employing representation learning for clustering cohorts by 

primary diagnosis category, and (3) our empirical evaluations that compared methods from medical-

concept learning to standard one-of-K coding to evaluate the change in effectiveness.  
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5.1 EMPIRICAL STUDY: REPRESENTATION LEARNING OVER CDW DATA 

One standard way to represent raw data is through medical groupers. As part of this effort, we have 

developed tools operating on real CDW data to assist in the preprocessing, normalization, and 

standardization of datasets. The first is a suite of grouping tools that aggregate fine-grained code 

information into higher-level semantic collections. These tools reduce the number of distinct diagnoses or 

procedures to be considered by an algorithm, which improves learning efficiency. These tools benefit 

analysis in three fundamental ways. 

1. These tools amplify the commonality between codes. For broad-level analysis, fine-grained 

distinction in minutes between the lengths of administrative visits may be less helpful than the 

knowledge that a patient is participating in an administrative visit. 

2. The resulting multiset of aggregated codes often have a higher entropy than the original, so the 

raw codes with few data are often removed.  

3. Since the amount of the data is the same, but the number distinct aggregated codes is smaller, 

there are more repetitions of the same signal for the algorithm to learn from.  

 

First, we list the groupers that rely on external data. These include  

1. Group ICD-10 and ICD-9 codes specifically for PCS,  

2. Group ICD-10 and ICD-9 codes specifically for Clinical Modification (CM),  

3. Group CPT code using CCS information.  

These groupers, commonly referenced in publications, are a critical step to measuring how helpful some 

exploratory research can be in assisting the VA in its mission.  

Secondly, we list the groupers than rely only on internal data. These cross reference existing fields in the 

CDW database to leverage institutional knowledge and best practices. (An opportunity exists to evaluate 

the relative benefit of comparing both the external grouper information and internal grouper information. 

This evaluation could lead to discussions about the value of future investments in grouping technology.) 

These groupers include 

1. Group prescription (Rx) information by aggregating Drug Name information into Drug Category,   

2. Group CPT code level information into “MajorCPTCategory” information.  

In the service of cohort clustering, the level of aggregation provided by the final grouper may be too 

coarse. Specifically, the CPT codes associated with hearing aids, wheelchair seats, and distilled water are 

grouped into the same category. Moreover, codes associated with emergency room visits and short 

consultations concerning smoking cessation are grouped into the same category. This suggests that further 

comparative analysis may be needed to justify the inclusion of this CPT grouper over the CCS grouper.  

Each of the previous works cited in this area focuses on the ability to predict information concerning a 

visit (encounter). As such, this work hypothesizes an extension of previous visit-based prediction methods 

to a patient-based prediction.  

5.2 WORK PLAN: EVALUATING EFFECTIVENESS OF REPRESENTATION LEARNING  

For the purpose of evaluating the effectiveness in employing representation learning for clustering cohorts 

by primary diagnosis category, we implement the following work plan. The goal is a software capability 
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operating on CDW data that can drill down into SIHD cohort information and provide more context into 

probable outcomes using medical-concept representation learning. The work plan steps are as follows. 

1. Obtain access to broad-based cohort information across multiple ICD-9/ICD-10 codes, CPT 

codes, and Rx codes.  

2. Obtain access to outcome information (previous literature has focused around the 3–6 month time 

period).  

3. Develop methods to standardize coding before representation learning using groupers  

 

A. for ICD diagnostic codes (CM codes), 

B. for ICD hospital inpatient codes (PCS codes),  

C. for CPT codes, and 

D. possibly include Logical Observation Identifiers Names and Codes for laboratory results 

(Shivade et al., 2013).  

 

4. Construct categorical, one of K, encoding of grouped and normalized data. 

5. Using the Gensim Python package, apply a medical-concept representation learning method (Zhu 

et al., 2016; Choi, Schuetz, Stewart, & Sun, 2016; Miotto, Li, Kidd, & Dudley, 2016) to identify 

relationships within CPT and Rx fields.  

 

A. Over patient histories of up to 1 year  

B. Over patient histories of longer duration 

 

6. Train cohort clustering methods on steps 4 and 5. 

7. Visualize results of steps 5 and 6.  

 

Due to recent successes in the literature, we think this is likely to assist in the delivery of higher quality 

health care by improving diagnosis cohort-clustering. Medical representation learning has improved 

predictions of heart failure up to 23% (Choi, Schuetz, Stewart, & Sun, 2016) and improved predictions of 

new disease onset by 15% (Miotto, Li, Kidd, & Dudley, 2016). This cohort analysis improves clinical 

practice informing outcome-informed guideline information about the patient at the time of care. From a 

research standpoint, medical-concept representation learning has the ability to flexibly include subject 

matter knowledge into algorithmic tools, improving the quality of analysis. There needs to be a historical 

focus on algorithm choice and subsequent performance, but recent work has highlighted the importance 

of data representation on results (Figure 14).  

 

Figure 14. Example of representation learning for diagnosis. (Choi, Schuetz, 

Stewart, & Sun, 2016). 

Specifically, this is achieved by embedding data into a vector space. Unlike standard categorical one-of-K 

encoded representations, medical-concept representation learning updates during model training. For 
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example, diagnosis could be represented as an indicator vector such that all entries except one contain the 

value zero (Choi, Schuetz, Stewart, & Sun, 2016). This representation clearly communicates which 

diagnosis a patient has, but it obscures the relationships between diagnoses. Indeed, the distance between 

any two distinct diagnoses represented by indicator vectors is equal. To the extent that downstream 

processing relies on distance for dimensionality reduction, such as principal component analysis (PCA) or 

clustering, distance between individual indicators may not be useful as an input. Representation learning 

is a method for capturing additional context between data to present to downstream analytics. 

We have examined the impact of applying a skip-gram representation learning method adopted from 

Mikolov, Sutskever, Chen, Corrado, & Dean (2013) to add the context associated with temporal 

co-occurrence to the input data (Figure 15). We have encouraged further work in this area by considering 

other representation learning methods such as auto-encoder-based methods, whether it be a denoising 

autoencoder such as in Miotto, Li, Kidd, & Dudley (2016) (Figure 16) or a variational auto-encoder 

(Kingma & Wellington, 2013). 

 

Figure 15. Skip-gram model objective is to learn word 

vector representations that are good at predicting 

nearby codes (Mikolov, Sutskever, Chen, Corrado, & 

Dean, 2013). 
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Figure 16. “Deep patient” uses auto-encoders to preform dimensionality reduction 

with some robustness in the representation(Miotto, Li, Kidd, & Dudley, 2016). This 

conceptual framework shows the following: A. preprocessing stage, B. modeling of raw 

representations, and C. application of deep features to database.  
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While medical-concept representation learning has clear benefits in existing literature, it is a data-driven 

method with drawbacks. There is an opportunity for unrepresentative data to highlight existing but 

medically spurious relationships. There are some best practices from the literature (Miotto, Li, Kidd, & 

Dudley, 2016; Choi, Schuetz, Stewart, & Sun, 2016; Zhu et al., 2016; Rajkomar et al., 2018) that attempt 

to address some possible pitfalls associated with these methods. These include  

• using expert feedback to curate labels (Miotto, Li, Kidd, & Dudley, 2016; Zhu et al., 2016),  

• limiting analysis to codes with not too few occurrences,  

• limiting analysis to patients with not too few codes,  

• using a visit as the unit of analysis, not a patient, and  

• inspecting the intermediate results to sanity check the intermediate results. 

There has been evidence from interpreting the results of representation learning to provide feedback on 

the quality of representation (Choi, Schuetz, Stewart, & Sun, 2016). A mitigation strategy employed by 

previous methods is to visualize or otherwise interpret the relationships learned in representation learning 

to provide evidence against spurious relationships (Figure 17). A common example of this approach has 

been chronicled in Mikolov, Yih, & Zweig (2013) with popular press MIT Technology Review referencing 

the arXiv work (MIT, 2015). We show below two examples of such inspection of intermediate results. 

Figure 17 gives four examples from the published literature of representation learning, clustering similar 

codes together by using co-occurrence relationships. Again, similar to Miotto, Li, Kidd, & Dudley (2016) 

and Choi, Schuetz, Stewart, & Sun (2016), we may visualize learned relationships between CPT codes 

learned by skip-gram. This collects the results of four queries. For a given code, each query asks what the 

most similar code and its similarity score to the input code is. The results (Table 2) demonstrate some 

expected relationships between hearing aid codes, EKG codes, medical discussion codes, and physical 

therapy codes. The fact that these relationships are anticipated provides a useful sanity check of the 

representation’s general usefulness.  

Table 2. Representation learning result on expanded CDW dataset. 
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Figure 17. Example of visualization of the relationships learned from skip-gram (Choi, Schuetz, Stewart, & 

Sun, 2016). 

 

5.3 EVALUATIONS  

For our empirical evaluation, we compared methods from medical-concept learning to standard one-of-K 

coding to evaluate the change in effectiveness as done in Choi, Schuetz, Stewart, & Sun (2016). We 

performed two primary empirical evaluations. The first evaluation was on a curated collection of 60 K 

patients with no more than 1 year of medical history included. The second was a collection of patients 

with no restriction to the amount of medical history included. This section evaluates the impact of these 

methods to inform clustering at a patient level rather than a visit level.  

We briefly discuss below some experimental design commonalities between the two evaluations. The first 

attempt to consider the sub-clustering of SIHD patients was redirected due to a lack of representativeness 

in the initial data cohort. In particular, the task of predicting individual SIHD diagnosis codes suffered 

from an extremely unbalanced data prediction problem as I20 is by far the most likely ICD-10 code 

associated with SIHD in the cohort. As such, we considered a more general problem of predicting the 

most likely primary diagnosis category. We consider the most frequently occurring of the top 10 primary 

diagnosis categories of each patient to be its label. The diagnosis categories were determined by grouping 

the ICD-10 using the multi-level CCS category Level I. The hypothesis across both evaluations is that 

representation learning is broadly useful independent of downstream processing models; thus, for each 

experiment, we trained three models—a logistic regression model, a two-layer neural network model, and 

a nearest-neighbor model—and then averaged the results. Each model was trained using (five) fold cross 
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validation. Specialized parameter settings can be found in the delivered code on our project’s internal 

GitLab repository.1 

5.3.1 Short History Evaluation  

This evaluation provided evidence that medical-representation learning improves predictions of primary 

diagnosis category of a short patient history through 12 experiments. We report the accuracy of predicting 

the label using the following inputs in performing this task: the multiset of CPT codes, the multiset of Rx 

codes, and the multiset of both procedure and prescriptions (CPT + Rx) (Table 3).  

 

Table 3. Accuracy of primary diagnosis category prediction using short patient histories. 

Data One-hot Skip-gram TF + skip-gram PCA 

CPT 35% 45% 52% 41% 

Increase over 

baseline 

 
28% 48% 17% 

Rx  32% 33% 34% 34% 
  

0 0 0 

CPT + Rx 39% 48% 48% 41% 
  

23% 23% 5% 

 

The first column of Table 3 details the accuracy determined by predicting using only the multiset given 

by the row title. This is the baseline method without representation learning. The second column 

demonstrates that training a skip-gram representation learning model increases predictive accuracy by 

28% for procedures. One challenge with using the multisets of codes is that variation introduced by 

different amounts of codes in their history. To explore this distinction, we combined a skip-gram model 

with a Term Frequency (TF) model. The TF model first represents the multiset of inputs as a probability 

distribution over the inputs; then the trained skip-gram model augments the probabilities using the 

interrelationships between categories. This combination method resulted in the best empirical result for a 

48% improvement over baseline. For comparison purposes, as was done in both Miotto, Li, Kidd, & 

Dudley (2016) and Choi, Schuetz, Stewart, & Sun (2016), we also report the result of principal 

component analysis (PCA) as a representation learning method for completeness. The results of PCA 

were worse in than skip-gram in the procedure case. 

5.3.2 Long History Evaluation  

This evaluation provided evidence that medical representation learning fails to improve prediction of 

primary diagnosis category of an arbitrarily long patient history through 12 experiments. We report the 

accuracy of predicting the label using the following inputs in performing this task: the multiset of CPT 

codes, the multiset of Rx codes, and the multiset of both procedure and prescription (CPT + Rx) codes. In 

each of the 12 experiments, the results were identical. The clustering algorithms failed to predict beyond 

the baseline. Subsequent analysis demonstrated a difference in “label purity” between the two 

evaluations, particularly since a patient was given a singular label associated with the most occurring 

diagnosis category. The data demonstrated that the assignment from patient to category became less 

definitive with the addition of more history. This seems intuitively clear. Over short durations a patient’s 

medical visits may focus on few categories, whereas over all time periods, they may be more spread out 

                                                      
1 In addition, we evaluated a Support Vector Machine model as well but found its performance was similar to the 

two-layer neural network model; however, it took much longer to evaluate.  
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over the categories. Empirically, we witnessed that for over 20% of long history patients the probabilities 

between the top two occurring categories was less than 5%. Furthermore, 50% of patients had a difference 

of less than 15%. This provides evidence that clustering methods struggle not due to any specific 

deficiency of representation learning but due to the changing strength of the label assignment per patient.  

5.4 LESSONS LEARNED AND NEXT STEPS 

We summarize the lessons learned in the following items: 

• The task of diagnosis clustering can be improved 40% by using representation learning. 

• Standard methods from medical literature might struggle to find meaningful relationships with 

raw prescription fields.  

• Representation learning might capture medically meaningful relationships in both prescription 

and procedure data. 

We summarize the next steps in this research with the following three items. 

1. Clustering by primary diagnosis category at scale over a long duration is challenging since a 

patient’s primary diagnosis category might be mixed. The variability introduced at this stage can 

drown out subsequent analysis. As such, we hypothesize that we should focus on clear, 

unambiguous signals to inform the analysis such as detecting transitions in diagnosis, detecting 

worsening chronic conditions such as diabetes, or predicting hospitalizations. These will have 

clear binary indications of activity over shorter time horizons, both of which have improved 

performance.  

2. We suggest demonstrating the extent to which the sub-cohort clustering of a subtype of SIHD 

behaves similarly to the current cohort clustering by primary diagnosis category. In particular, 

does performance degrade over long histories? We propose pursuing mitigation strategies for 

increasing performance over longer time horizons such as build hierarchies over short time 

periods, add demographic information, include more domain knowledge in data cleaning, and 

leverage sequential models to consider changing membership over time.  

3. Proposed future work includes prototyping, testing, and evaluating existing “interpretable 

models” such as Variational Autoencoder and comparing them with “Deep patient: an 

unsupervised representation to predict the future of patients from the electronic health records,” a 

paper by published in Scientific Reports by Miotto, Li, Kidd, and Dudley (2015). This is an 

evaluation task meant to assess which model might better suit the needs of the VA.  

 

6. TECHNOLOGY TRENDS IN HEALTH CARE 

In this section we discuss recent technology trends in health care as they relate to our AI and, more 

specifically, our ML research and approaches as described above.  

6.1 FORECAST FOR HEALTH DATA 

As noted by the medical and research communities, the volume of health care data is increasing at an 

unprecedented rate. In 2013, 153 exabytes of patient data were generated, and by 2020 that number is 

expected to grow to 2,314 exabytes, which equates to about 48% growth annually (Stanford Medicine, 

2017). This growth could be partially attributed to proposals to shift data collection from human 

transcription, which is highly error prone, to systems of sensor-collected and cloud-stored data, allowing 

for continuous real-time data collection (Rolim et al., 2010), which is the current most promising 

technological trend. Datasets of this magnitude cannot be efficiently analyzed by conventional means; 

however, through advances in AI, ML, and advanced analytics, these data can provide improved 
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individualized patient care. Through the implementation of continuous monitoring and interpretation of 

patient-generated data, clinical pathways could be generated that are self-adaptive and able to enhance 

both the efficiency and quality of the physician-patient interaction (Alexandrou, Skitsas, & Mentzas, 

2011) Future implementations of advanced analytical methods can be enhanced by the use of these 

techniques in cloud computing, lowering costs and increasing scalability. 

Below, we further discuss trends related to the AI/ML methods used in our research as well as trends in 

some related areas in medicine which would benefit from AI, including genetic research, medical-image 

analysis, real-time clinical decision support, business intelligence for hospital administration, appointment 

scheduling, diagnoses, and population health management.  

6.2 TRENDS IN HEALTH CARE USING AI 

As demonstrated in our research, AI/ML methods can provide tailored, precise clinical pathways for very 

specific sub-cohorts. Foundational medical guidelines such as Fihn et al. (2012) offer guidelines for 

diseases such as SIHD but are not adapted to specialized patient cohorts. Using AI and ML techniques, 

we can assess the efficacy of treatment protocol guidelines as they are applied to sub-cohorts of patients 

with divergent clinical characteristics. Through clinical pathway inference, we can adapt clinical 

pathways to reflect a more cohort-specific pathway, and using medical-concept representation learning, 

we can refine clinical pathway guidelines, thereby providing improved specificity and accuracy in clinical 

and population outcomes. For individual patients, using AI/ML, we can analyze a cohort member’s EHR 

to better target treatment protocols that more precisely address the patient’s therapeutic needs.  

A well-written clinical pathway, which is flexible enough to accommodate individual patients and needs, 

can lead to real-time clinical decision support when paired with an AI-driven user interface. A clinical 

pathway can recognize a series of events that it has seen before and offer real-time suggestions on the 

next potential step according to a statistical analysis of the most probable path to lead to a successful 

outcome for the patient. An AI-driven user interface could adapt the clinical pathway to lead to 

individualized patient care while offering guidance that enables physicians to be more effective with their 

time (Alexandrou, Skitsas, & Mentzas, 2011). 

As discussed in our research above, one method of modeling clinical pathways is pathway inference, 

which uses LDA, an RBM, and word embedding. In terms of topic modeling, LDA is a methodology for 

determining what a document is saying based on the frequency of terms it uses, while an RBM is a neural 

network system with two layers where no node on the same layer is connected, as will be demonstrated in 

ORNL’s future work. The idea is that the documentation from previous patients is analyzed, patterns are 

inferred, and those patterns are used to implement new clinical pathways. These patterns allow patient 

cohorts to be further broken down into sub-cohorts, which allows for more refined clinical pathways to be 

applied. Additionally, the further refinement of patient groups allows for any aberrant treatments to be 

easily identified and rectified. Even among patients with the same illness and treatment, such as colorectal 

cancer, there are significant variations in outcomes. These “unwarranted variations” result from genetic 

background, tumor micro-environment, and response to treatment. Aside from biological contributions, 

other factors, such as socioeconomic status and geographical location, factor into clinical outcome. By 

further stratifying patient cohorts beyond traditional methods, better risk profiles can be adapted, leading 

to better comparisons of facility efficacy as well (Menon, Cunningham, & Kerr, 2016). 

The medical-concept representation learning method is also used in our research. The goal of this method 

is to go from a clinical pathway that was written for a broad group of patients and adapt it to provide 

individualized, precision patient care. By learning the concepts of medical information, this method 

provides flexibility by obtaining a pathway and allowing multiple variations of similar data to pass 

through the system. This tailored clinical pathway is accomplished by interpreting free-text entries in 



 

34 

EHRs as well as different naming methods for drugs, diseases, and labs (Choi, Schuetz, Stewart, & Sun, 

2016). For example, other methods of interpreting EHRs would view ischemic heart disease, coronary 

artery disease, and coronary heart disease as separate conditions even though these terms are often used 

interchangeably. The same logic follows for using the name brand for drugs vs. the generic name. This 

technique allows modeling systems to be more adaptive to different regions and populations. This 

methodology should provide the most granularity and thus the most individualized treatment path leading 

to the highest quality of care. 

Through the ORNL advanced analytics architecture, which is also supporting the Million Veterans 

Program, we are given the opportunity to use AI/ML methods for genomics science. Particularly 

advantageous uses of ML techniques in genomics are to recognize patterns that can be used to annotate 

genes by mapping untranslated regions, introns, and exons along entire chromosomes. In addition to 

annotating chromosomes, ML can be used to distinguish various disease phenotypes in DNA microarrays. 

(Libbrecht & Noble, 2015) Both of these uses dramatically reduce the amount of time it takes for a 

researcher to accomplish the given task, thereby increasing efficiency. In DNA, where the vast majority 

of data is unexpressed, predictive algorithms, which determine the likelihood of any given sequence being 

expressed, aid researchers greatly and will lead to a dramatic increase in the output of work seen in this 

field. 

Medical image analysis, aided by AI, is already helping radiologists analyze two-dimensional medical 

images such as radiographs and ultrasounds, and three-dimensional convolutional neural networks 

designed to help with MRIs are currently under research (Tang et al., 2018). As AI-assisted radiological 

diagnosis continues progressing, this technology is predicted to help radiologists by triaging and 

providing preliminary diagnoses to radiologists, which will greatly speed up their workflow (Tang et al., 

2018). 

The use of AI in clinical administration and health policy has the potential to improve patient care 

through ensuring effective medication strategies and reducing costs. US hospitals have experienced 

between 174 and 320 drug shortages on the last day of each quarter since the first quarter of 2013 (ASHP, 

2018), which are strongly associated with a decrease in the number of suppliers, failure to comply with 

manufacturing standards, and a number of drugs having sales of generic versions (GAO, 2016). These 

massive shortages leave patients either waiting for a drug that could improve their quality of life or 

possibly paying an inflated rate for an alternative. One way to mitigate this situation is to use a database 

like AHFS to find alternative drugs with similar pharmacological properties. AI can be applied during the 

billing process to cross reference codes of drugs with known shortages to a list of known alternatives and 

offer suggestions.  

Another potential use of AI is the optimization of hospital appointment scheduling. Hospitals often face 

times with surges of patient admittances. During these times, patients face extended wait times and 

physicians face extended work hours. AI could improve the efficiency by identifying bottlenecks in the 

patient pathways and optimize routes of treatment for peak efficiency. Some procedures take minimal 

time to perform but a substantial amount of time to get to. This efficiency could be improved by use of AI 

patient routing. 

AI methods have also been developed to improve interpretation of waveforms that can be gathered by a 

simple Holter monitor. ST-segment deviation can be analyzed as quickly as a visual inspection with 

accuracy that measures exact amplitudes that cannot be detected by eye (Myers, Scirica, & Stultz, 2017). 

This indicator is extremely helpful in determining a patient’s risk factors, when coupled with 

demographics (Kaul et al., 2001). Additionally, AI methods can be used to perform large-scale population 

health management such as epidemiology simulations of the spread of infectious disease and 
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demographics-driven health care analysis. These studies can improve the quality of research from public 

health groups and recognize issues that were unnoticed before. 

6.3 HEALTH CARE’S FUTURE ANALYTIC NEEDS  

To achieve all the benefits of real-time, clinical AI/ML approaches to patient cohorts and individual 

clinical analytics, the computing infrastructure needs to support very large-scale data storage and highly 

scalable, intensive computing platforms. The main conceptual solution to these needs is the use of 

large-scale cloud computing and shared access to these resources in an extensible way. As cloud systems 

are typically outsourced, there is also increased compatibility with existing infrastructure, which lowers 

the overall cost and improves accessibility for smaller health care systems. These systems are also highly 

scalable for increased use with future growth. In edge computing, data are collected and analyzed in a 

geographically local vicinity. This system is much more expensive to set up as the health care facility has 

to buy the computational power to suit their needs as well as upkeep; however, the benefit is a lower 

latency period (on the order of milliseconds) as the data are processed closer to its origin. In summation, 

the future of health care technology is found in large-scale cloud computing, using AI methods on big 

health data, which can meet health care’s analytic needs for clinical decision support and business 

intelligence. 
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A-1 

APPENDIX A. OCCURENCES OF COMPONENTS IN PATHWAY 

COMPONENTS 

Appendix A, Figures A-1-(a) through A-1-(j) show expected occurrences of components in each pathway 

pattern computed using posterior probabilities (Gibbs sample). 

 

Figure A-1(a). The expected occurrences of components in pathway component 1. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(b). The expected occurrences of components in pathway component 2. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(c). The expected occurrences of components in pathway component 3. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(d). The expected occurrences of components in pathway component 4. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(e). The expected occurrences of components in pathway component 5. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(f). The expected occurrences of components in pathway component 6. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(g). The expected occurrences of components in pathway component 7. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(h). The expected occurrences of components in pathway component 8. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(i). The expected occurrences of components in pathway component 9. The 

expected amount is computed by Gibbs sample. 
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Figure A-1(j). The expected occurrences of components in pathway component 10. The 

expected amount is computed by Gibbs sample. 

 


